Hallosemuanya, kali ini kita akan membahas dan belajar tentang materi pembelajaran pada tingkat SMA/MA sederajat. Akan saya buat playlist Materi SMA/MA deng
Dalam artikel Matematika kelas 11 ini akan menjelaskan cara mencari determinan dan invers suatu matriks disertai dengan beberapa contoh soal dan pembahasannya. — Di artikel sebelumnya, kita udah belajar mengenai pengertian serta operasi hitung pada matriks. Hayoo, ada yang masih ingat syarat perkalian dua matriks itu apa? Nah loh! Masa sih udah lupa aja. Coba deh baca-baca lagi artikel di link ini kalau kamu lupa. Nah, bahasan kali ini masih seputar matriks, nih. Pasti kamu udah tau dari judul artikel di atas. Yap! Bener banget. Kita akan belajar tentang cara mencari determinan dan invers matriks. Waduh, bagaimana tuh ya? Langsung aja yuk kita simak bersama-sama. Cara Mencari Determinan Matriks Well, kita mulai dari cara mencari determinan matriks terlebih dahulu, ya. Kenapa? Soalnya, untuk mencari invers matriks, kita perlu mencari determinan matriksnya lebih dulu. Teman-teman ada yang udah tau apa itu determinan matriks? Determinan adalah nilai yang dapat dihitung dari unsur-unsur suatu matriks persegi. Maksudnya matriks persegi tuh yang kayak gimana sih? Matriks persegi adalah matriks yang memiliki jumlah baris dan kolom yang sama, sehingga kalau kita gambarkan bentuk matriksnya, akan membentuk bangun layaknya persegi. “Jadi, kalau jumlah baris dan kolomnya nggak sama, kita nggak bisa mencari determinannya?” Jawabannya udah pasti, sumber Gimana, paham ya sampai sini? Oke, kita lanjut, ya. Misalnya, terdapat suatu matriks yang kita beri nama matriks A. Determinan matriks A bisa ditulis dengan tanda det A, det A, atau A. Nah, cara mencari determinan suatu matriks juga berbeda-beda, tergantung dari ordonya. Kita bahas satu-satu, ya… Baca juga Memahami Konsep Turunan Fungsi Aljabar a. Determinan Matriks Ordo 2×2 Misalkan,adalah matriks berordo 2×2. Elemen a dan d terletak pada diagonal utama, sedangkan elemen b dan c terletak pada diagonal kedua. Determinan matriks A dapat diperoleh dengan mengurangkan hasil kali elemen-elemen diagonal utama dengan hasil kali elemen-elemen diagonal kedua. Nah, supaya kamu nggak bingung, coba kita perhatikan contoh soal di bawah ini. Contoh soal Tentukanlah determinan matriks berikut! Pembahasan Teman-teman, mudah kan ternyata. Hm, kira-kira, mencari determinan matriks berordo 3×3 mudah juga nggak ya? Yuk, kita cari tau! b. Determinan Matriks Ordo 3×3 Misalkan,adalah matriks berordo 3×3. Terdapat dua cara yang bisa dilakukan untuk mencari determinannya, yaitu menggunakan aturan Sarrus dan metode minor-kofaktor. Hmm… Kamu pasti bingung ya maksud rumus di atas. Tenang aja, di bawah ini udah ada contoh soal dan pembahasannya kok. Jadi, bisa kamu pahami dengan baik. Tapi, jangan cuma dibaca aja ya. Supaya kamu lebih mudah paham, coba deh ikutan corat-coret di kertas. Yuk, siapkan pulpen dan kertasnya! Baca juga Kedudukan Titik dan Garis Lurus pada Lingkaran Contoh soal determinan matriks Tentukan determinan matriks berikut ini menggunakan aturan Sarrus dan metode minor-kofaktor! Pembahasan Aturan Sarrus Agar lebih mudah, kita tulis kembali elemen-elemen pada kolom ke-1 dan ke-2 di sebelah kanan matriks A sebagai berikut Kemudian, kita tarik garis putus-putus seperti gambar di atas. Kalikan elemen-elemen yang terkena garis putus-putus tersebut. Hasil kali elemen yang terkena garis putus-putus berwarna biru diberi tanda positif +, sedangkan hasil kali elemen yang terkena garis putus-putus berwarna oranye diberi tanda negatif -. Ingat urutan penulisannya juga, ya! Sepintas terlihat cukup rumit ya. Tapi, kalau kamu sering berlatih soal, pasti akan hafal dengan sendirinya. Jadi, jangan malas untuk berlatih soal, ya! Sekarang, kita coba kerjakan menggunakan metode yang satunya lagi kuy! Metode Minor-Kofaktor Berdasarkan rumus minor-kofaktor di atas, determinan matriks A dapat dicari dengan menghitung jumlah seluruh hasil kali antara kofaktor matriks bagian dari matriks A dengan elemen-elemen pada salah satu baris atau kolom matriks A. Jadi, pertama, kita pilih salah satu baris atau kolom matriks A untuk mendapatkan nilai determinannya. Misalnya, kita pilih baris ke-1. Elemen-elemen matriks baris ke-1, yaitu a11, a12, dan a13. Selanjutnya, karena kita pilih elemen-elemen pada baris ke-1, rumus determinan matriks yang kita gunakan adalah sebagai berikut Langkah kedua, kita cari kofaktor matriks bagian dari matriks A Cij. Cij = -1i+j Mij dan Mij = det Aij dengan Aij merupakan matriks bagian dari matriks A yang diperoleh dengan menghilangkan baris ke-i dan kolom ke-j. Maksudnya bagaimana? Oke, coba kamu perhatikan baik-baik ya. Sebelumnya, kita telah memilih elemen-elemen pada baris ke-1, yaitu a11, a12, dan a13. Oleh karena itu, matriks bagian dari matriks A nya adalah A11, A12, dan A13. A11 diperoleh dengan menghilangkan elemen-elemen pada baris ke-1 dan kolom ke-1. A12 diperoleh dengan menghilangkan elemen-elemen pada baris ke-1 dan kolom ke-2. A13 diperoleh dengan menghilangkan elemen-elemen pada baris ke-1 dan kolom ke-3. Sehingga, Kalau kamu perhatikan, nilai determinan matriks A yang dihasilkan menggunakan dua metode di atas akan sama aja ya. Jadi, kamu tinggal pilih nih, mana metode yang menurutmu paling mudah. Tapi, meskipun begitu, ada baiknya kamu juga pahami kedua-duanya. Kenapa? Siapa tau di ujian nanti keluar dua-duanya, loh. Mau punya banyak latihan soal? Langsung aja cek fitur Bank Soal di aplikasi Ruangguru ya. Oh iya, kamu juga perlu tau nih, determinan matriks memiliki beberapa sifat sebagai berikut Teman-teman, ada pertanyaan nggak sejauh ini? Kalau ada yang ingin ditanyakan, tulis aja pertanyaanmu di kolom komentar, ya. Kita lanjut ke materi berikutnya yuk, yaitu invers matriks. Ada yang udah nggak sabar mau tau cara mencari invers suatu matriks? Yok lah kita simak bahasan berikut. Cara Mencari Invers Matriks Kamu pasti nggak asing lagi dengan istilah invers. Saat mendengar kata invers, kamu pasti teringat materi fungsi invers yang udah pernah kamu pelajari sebelumnya. Invers dapat juga diartikan sebagai lawan dari sesuatu kebalikan. Invers matriks adalah kebalikan invers dari sebuah matriks. Jadi, apabila matriks tersebut dikalikan dengan inversnya, maka akan menjadi matriks identitas. Pada fungsi invers, kita disuruh mencari kebalikan dari fungsi tersebut. Misalnya aja, invers dari fx = 2x, maka jawabannya adalah f-1 x = ½ x. Gimana cara mencarinya? Kalau lupa, bisa langsung klik link di bawah ini. Baca juga Apakah Fungsi Invers itu? Invers pada fungsi dengan invers pada matriks tentu aja berbeda. Selain itu, sama halnya dengan determinan, ordo matriks mempengaruhi cara mencari invers pada matriks tersebut. Nah, jika suatu matriks memiliki invers, maka dapat dikatakan matriks tersebut adalah matriks nonsingular. Sebaliknya, jika suatu matriks tidak memiliki invers, maka matriks tersebut merupakan matriks singular. Teman-teman, untuk penjelasan lebih lengkapnya mengenai mencari invers matriks dapat kamu perhatikan penjelasan di bawah ini. a. Invers Matriks Ordo 2×2 Kita langsung ke contoh soal ya agar kamu semakin paham. Contoh soal invers matriks ordo 2×2 Tentukanlah invers dari matriks berikut. Pembahasan Catatan elemen-elemen yang berada di lingkar biru merupakan diagonal utama matriks A yang ditukar posisinya, sedangkan elemen-elemen yang berada di lingkar oranye merupakan diagonal kedua matriks A yang dikalikan dengan minus satu -1. Gimana, paham ya dengan pembahasan di atas. Lanjut ke invers matriks ordo 3×3 yuk! b. Invers Matriks Ordo 3×3 Mencari invers matriks berordo 3×3 dapat dilakukan dengan dua cara, yaitu dengan adjoin dan transformasi baris elementer. Hm, kira-kira seperti apa ya penjelasan lebih detailnya. Mari kita bahas satu persatu, ya. Invers matriks ordo 3×3 dengan adjoin Pada penjelasan sebelumnya tentang determinan matriks, kamu udah tau kan bagaimana cara mencari kofaktor dari suatu matriks. Nah, dari kofaktor-kofaktor tersebut, kita dapat menentukan adjoin matriksnya, lho. Adjoin matriks merupakan transpose dari suatu matriks yang elemen-elemennya merupakan kofaktor dari elemen-elemen matriks tersebut. Sekarang, coba perhatikan contoh soal di bawah ini. Contoh soal invers matriks ordo 3×3 dengan adjoin Tentukan invers matriks berikut dengan menggunakan adjoin! Penyelesaian Oke, berdasarkan rumus di atas, kita membutuhkan determinan dan adjoin matriks A. Pertama, kita cari terlebih dahulu determinan matriks A menggunakan metode yang sudah dijelaskan sebelumnya. Bisa dengan cara aturan Sarrus ataupun metode minor-kofaktor. Misalnya, kita akan menggunakan metode Sarrus, sehingga Kemudian, kita tentukan adjoin matriks dengan mencari kofaktor matriks A tersebut. Oleh karena itu, Jadi, Invers matriks ordo 3×3 dengan transformasi baris elementer Untuk menentukan invers matriks menggunakan transformasi baris elementer, kamu dapat mengikuti langkah-langkah berikut ini. Bingung ya sama langkah-langkah di atas? Yaudah, supaya nggak bingung, di bawah ini ada contoh soal, nih. Gimana kalo kita kerjakan sama-sama. Pulpen dan kertas tadi masih ada, kan? Contoh soal invers matriks 3×3 dengan transformasi baris elementer Tentukan invers matriks A dengan transformasi baris elementer. Pembahasan Pertama-tama, kita bentuk matriks A menjadi matriks A3I3. Lalu, kita transformasikan matriks A3I3 ke bentuk I3A3. Kita bisa menggunakan beberapa cara seperti yang dijelaskan poin a-d pada langkah ke-2 rumus di atas. Keterangan 1 B2-2B1 = elemen-elemen baris ke-2 dikurang 2 kali elemen-elemen baris ke-1. 2 B3-2B1 = elemen-elemen baris ke-3 dikurang 2 kali elemen-elemen baris ke-1. 3 B3+B2 = elemen-elemen baris ke-3 ditambah elemen-elemen baris ke-2. 4 1/5B3 = elemen-elemen baris ke-3 dikali degan ⅕. 5 B2-2B3 = elemen-elemen baris ke-2 dikurang 2 kali elemen-elemen baris ke-3. 6 B1-B2 = elemen-elemen baris ke-1 dikurang elemen-elemen baris ke-2. Sehingga, diperoleh invers matriks A, yaitu “Ingin berkata kasar tapi diriku terlalu Masya Allah”. Pusing ya? Belajarnya pelan-pelan aja dulu. Baca dan pahami penjelasannya berulang-ulang. Selain itu, coba juga untuk latihan mengerjakan beberapa soal. Ingat! Belajar Matematika itu butuh kesabaran, waktu, dan ketekunan, loh. Makanya, jangan harap sekali belajar langsung hafal rumus dan expert menjawab soal. Apalagi kalau besok ada ulangan, terus baru hari ini kamu belajar. Duh! Hasilnya udah pasti kurang maksimal. Coba deh baca artikel 7 solusi belajar menghadapi ulangan Matematika di blog Ruangguru biar lain kali kamu punya strategi yang tepat agar ulangan kamu nggak remed terus. Nah, teman-teman, kita lanjut ya. Invers pada matriks juga memiliki beberapa sifat yang bisa kamu ketahui. Apa aja ya? Ini dia! Waduh, banyak juga ya materi yang kita pelajari hari ini. Semoga penjelasan mengenai cara mencari determinan dan invers matriks di atas tadi bermanfaat ya buat kamu. Oh iya, kalau misalnya kamu masih kurang mengerti dengan materi ini dan ingin penjelasan yang lebih lengkap dan menarik, kamu bisa kok cobain belajar lewat aplikasi ruangbelajar. Bukan hanya video animasi menariknya aja yang bikin kamu nggak gampang bosen, tapi juga Master Teachernya yang asik dan keren-keren. Buruan langganan yuk sekarang! Sumber referensi Wirodikromo, S. dan Darmanto, M. 2019 Matematika untuk SMA/MA Kelas XI kelompok Wajib 2. JakartaErlangga. Artikel ini telah diperbaharui pada 15 Maret 2023.Padaartikel ini, kita akan membahas cara lain untuk memperoleh determinan suatu matriks yakni dengan menggunakan metode ekspansi kofaktor. Cara menentukan determinan matriks 3x3. minor ini hanya bisa ditemukan pada matriks 2 x 2 ke atas, sehingga matrik 1 x 1 tidak akan memiliki minor. B banyaknya elemen pada matriks b. M 13 = a 1.
Jika adik-adik menemukan soal tentang Matriks dan menentukan Minor Dan Kofaktor beserta adjoinnya, Simak pembahasan serta contoh soal yang afrizatul bagikan agar mengetahui cara mencari jawaban dari soal masuk ke contoh soalnya, ada baiknya adik-adik ketahui dulu apa yang dimaksud dengan minor matrik dan kofaktor matriks terutama ketika ingin mengerjakan soal tentang invers matriks pada bidang studi Yang Dimaksud Dengan Matriks Minor?Mencari nilai minor suatu matriks Mij adalah mencari nilai determinannya dengan cara menghilangkan elemen-elemen pada baris ke-i dan elemen-elemen pada kolom jika terdapat matriks ordo 2×2 maka ketika mencari nilai minor pada matriks tersebut kita mulai dari M11, M12 lalu M21 dan juga jika matriks ordo 3×3, kita bisa cari minornya dari M11, M12, M13 kemudian M21, M22, M23 dan M31, M32, Yang Dimaksud Kofaktor Matriks?Kofaktor matriks merupakan matriks yang dimana elemen-elemennya adalah nilai minor dari matriks nilai elemen pada matriks kofaktor berisi nilai minor yang sudah didapatkan sebelumnya sesuai dengan posisi elemen lebih mudah, adik-adik bisa menyimak contoh soal di bawah ini!Baca juga Contoh Soal Matriks Kelas 11 Beserta Jawabannya Essay & Pilihan GandaDisini kami menggunakan 1 contoh matriks dengan ordo 3×3, Jadi untuk matriks ordo 2×2, 4×4 dan sebagainya bisa menggunakan cara yang sama untuk mencari minor, kofaktor serta adjoin matriks A dengan ordo 3×3 dengan elemen 1, 4, 3, 2, 5, 1, 3, 4, 2 Tentukan minor, kofaktor dan adjoin dari matriks A!1. Mencari Minor Matriks 3×3Penyelesaian Pembahasan Pertama kita cari dulu M11 atau minor baris ke-1 dan kolom ke-1 yaitu Baris ke-1 = 1, 4, 3Kolom ke-1 = 1, 2, 3Sehingga menghasilkan matriks ordo 2×2 atau elemen yang tidak tertutup yaitu 5, 1, 4, 2. Dan kita cari kesimpulannya M11 adalah determinan matriks ordo 2×2 atau elemen yang tidak tertutup minor M11 maka bisa kita kalikan silang yaitu 5×2 dan 1×4, Dan elemen minor M11 hasilnya adalah M12, elemen yang tidak tertutup nya adalah 2, 1, 3, 2. Dan lakukan perkalian silang seperti cara M13, Ulangi cara tersebut sampai ke minor M33 atau baris ke-3 dan kolom mendapatkan hasil minor dari matriks A, sekarang kita mencari kofaktornya!2. Mencari Kofaktor Matriks 3×3Penyelesaian Pembahasan Kofaktor pada matriks A berarti simbolnya kof A, Kemudian masukkan elemen minor M11 sampai perhatikan kenapa ada yang positif dan ada yang negatif? Karena mencari kofaktor pada matriks simbolnya akan seperti ini Jadi setiap elemen berbeda-beda baris pertama positif, negatif, positifbaris kedua negatif, positif, negatifbaris ketiga positif, negatif, untuk matriks A dengan ordo 3×3, lalu bagaimana polanya jika matris dengan ordo 4×4 atau yang lainnya?Adik-adik bisa tambahkan saja di baris pertama negatif, baris kedua positif dan baris ketiga negatif, yang penting setiap baris sudah paham, kita masukkan elemen minor yang telah kita dapatkan tadi sesuai tanda atau pola yang telah sebelum mencari kofaktor pada suatu matriks, adik-adik harus mengetahui dulu cara mencari terakhir yaitu dengan mengkalikan tanda positif atau negatif sesuai angka atau nilai pada elemen minor Mencari Adjoin Matriks 3×3Berikutnya kita akan mencari adjoin matriks A tersebut, Hal ini sangat penting karena cara ini berguna untuk mencari invers suatu Pembahasan Untuk mencari adjoin pada sebuah matriks, kita cari dulu kofaktornya lalu kita transpose. Maka kesimpulannya adjoin matriks A sama dengan transpose matriks kita sudah mendapatkan hasil dari kofaktor matriks A 3×3 di cara yang ke-dua sebelumnya, maka kita cukup transpose saja matriks ingat bagaimana cara mentranspose sebuah matriks? Benar, Caranya mengubah baris menjadi kolom dan kolom menjadi kita telah mendapatkan hasil transpose kofaktor matrik A atau Adjoin matriks pembahasan singkat materi tentang Matriks untuk mencari Minor Dan Kofaktor beserta adjoin dengan ordo 3×3, Semoga bisa mudah dipahami dan membantu adik-adik dalam mengerjakan tugas sejenis.
Jadibesar determinan dari matriks 3x3 tersebut bernilai -28. 2. Hitunglah nilai determinan dari matriks berordo 3x3 dengan metode minor kofaktor berikut! Jawab: Untuk mencari nilai determinan matriks A dengan metode minor kofaktor hitung terlebih dahulu nilai minor dan kofaktor. Hitung Minor M 11 dan Kofaktor C 11 dari a 11:Selislih antara perkalian elemen-elemen pada diagonal utama dengan diagonal sekunder pada matriks persegi disebut determinan matriks. Simbol determinan matriks adalah tanda nama matriks atau detnama matriks, misalnya determinan matriks A dituliskan dalam simbol A atau detA. Determinan matriks hanya terdapat pada matriks persegi, misalnya determinan matriks 3×3. Matriks adalah kumpulan beberapa bilangan yang disusun dalam baris dan kolom di dalam tanda kurung atau kurung siku [ ]. Ukuran matriks ordo dinyatakan dalam baris × kolom, sehingga matriks dengan ukuran 3×1 memiliki bentuk yang berbeda dengan matriks ukuran 1×3. Matriks persegi adalah matriks yang memiliki jumlah baris sama dengan jumlah kolom disebut dengan. Pada matriks dengan jumlah baris dan kolom sama dengan dua merupakan matriks persegi ordo 2. Sedangkan matriks persegi dengan jumlah baris dan kolom sama dengan 3 disebut matriks berordo 3, begitu seterusnya. Sehingga determinan matriks 3×3 adalah nilai determinan dari matriks persegi yang memiliki jumlah elemen baris = kolom = 3. Cara Menentukan determinan pada matriks persegi dengan ukuran 2 x 2 cukup mudah dilakukan yaitu dengan menghitung selisih perkalian bilangan antara diagonal utama dengan diagonal sekunder. Diagonal utama adalah bilangan-bilangan pada garis diagonal yang ditarik dari sisi kiri atas ke kanan bawah matriks. Sedangkan diagonal sekunder adalah bilangan-bilangan pada garis diagonal yang ditarik dari sisi kanan atas ke kiri bawah matriks. Sedangkan pada cara menentukan determinan matriks 3×3 memerlukan perhitungan yang lebih rumit dan ditidak semuah perhitungan determinan matriks 2×2. Cara yang dapat digunakan untuk menentukan determinan matriks 3×3 adalah metode kofaktor dan aturan Sarrus. Bagaimana cara menentukan determinan matriks 3×3 dengan metode kofaktor? Bagaimana cara menentukan determinan matriks 3×3 dengan aturan Sarrus? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Baca Juga Perkalian Matriks 2×2, 3×3, dan mxn dengan nxm Determinan Matriks 3×3 dengan Metode Kofaktor Ada cara lain yang dapat digunakan untuk menentukan nilai determinan dari suatu matriks persegi dengan ordo 3 x 3 yaitu metode minor-kofaktor. Rumus umum yang berlaku pada metode kofaktor terdapat dalam sebuah teorema yang telah terbukti kebenarannya. Bunyi dari teorema untuk nilai determinan matriks persegi berordo n terdapat seperti pernyataan berikut. Teorema Determinan matriks A yang berukuran n x n dapat dihitung dengan mengalikan entri-entri dalam suatu baris atau kolom dengan kofaktor-kofaktornya dan menambahkan hasil-hasil kali yang dihasilkan yakni untuk setiap 1 ≤ i ≤ n dan 1 ≤ j ≤ n, maka detA = a1jC1j + a2jC2j + … + anjCnjekspansi kofaktor sepanjang kolom ke-j Atau detA = ai1Ci1 + ai2Ci2 + … + ainCinekspansi kofaktor sepanjang baris ke-i Dari teorema di atas disinggung kofaktor yang definisinya diberikan seperti berikut. Definisi Jika A adalah matriks kuadrat, maka minor entri aij dinyatakan oleh Mij dan didefinisikan menjadi determinan submatriks yang tetap setelah baris ke-i dan kolom ke-j dicoret dari A. Kofaktor entri aij dinyatakan dalam persamaan Cij = –1i+jMij Untuk mempermudan pemahaman sobat idschool, perhatikan bagaiaman menentukan minor entri aij dan kofaktor entri aij pada matriks A berikut. Selanjutnya, nilai determinan matriks A dapat ditentukan melalui persamaan detA = a11C11 + a12C12 + a13C13. Perhatikan cara menentukan determinan matriks 3×3 berikut. Baca Juga Penggunaan Matriks untuk Menyelesaikan Sistem Persamaan Linear Aturan Sarrus untuk Menentukan detA Aturan Sarrus merupakan kasus khusus dari metode kofaktor yang terdapat pada matriks berukuran 3 x 3. Perhatikan kembali komponen susunan bilangan pada matriks A. Minor entri a11, a12, dan a13 yaitu M11, M12, dan M13 memenuhi persamaan-persamaan berikut. Sehingga kofaktor untuk a11, a12, dan a13 diberikan seperti persamaan C11, C12, dan C13 berikut. C11 = –11+1 ⋅ M11 = ei – fh C12 = –11+2 ⋅ M12 = fg – di C13 = –11+3 ⋅ M13 = dh – eg Sehingga diperoleh determinan matriks A seperti yang ditunjukkan pada langkah berikut. detA = a11C11 + a12C12 + a13C13detA = aei – fh + bfg – di + cdh – ge= aei – afh + bfg – bdi + cdh – ceg= aei + bfg + cdh – ceg – afh – bdi Untuk memudah mengingat persamaan umum pada Aturan Sarrus perhatikan cara berikut. Penggunaan Aturan Sarrus untuk menentukan nilai determinan matriks persegi dengan ordo 3 dapat dilihat seperti langkah-langkah berikut. Penyelesaian detA = AA = 4×4×4 + 3×2×3 + 5×1×2 – 5×4×3 – 4×2×2 – 3×1×4A = 64+18+10–60–16–12 = 4 Diperoleh determinan matriks 3×3 tersebut adalah detA = 4, Di mana nilainya sama dengan cara sebelumnya, bukan? Aturan Sarrus merupakan metode yang paling tepat digunakan untuk menentukan nilai determinan matriks persegi berordo 3. Untuk menghitung nilai determinan matriks dengan ordo lebih tinggi sepert 4×4, 5×5, atau yang lebih tinggi dapat menggunakan metode kofaktor atau kombinasi Aturan Sarrus dan metode kofaktor. Demikianlah tadi ulasan cara menentukan determinan matriks 3×3 dengan metode kofaktor dan Aturan Sarrus. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat! Baca Juga Jenis-Jenis MatriksRumusDeterminan Matriks 3×3 Minor Kofaktor. Ternyata masih ada metode lain untuk menentukan rumus determinan matriks 3×3 lho, yaitu Metode Minor-Kofaktor. Coba elo perhatikan konsep dari determinan yang satu ini. Dari matriks A di atas, kita buang elemen A ij, maksudnya adalah matriks A elemen ke ij.
Berikut ini mimin sajikan cara menentukan minor dan kofaktor matriks ordo 3x3. Selamat membaca, sobat. Semoga matriks $A = \begin{pmatrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\end{pmatrix}$Minor elemen $a_{ij}$ dinotasikan dengan $M_{ij}$ adalah determinan dari matriks baru ordo 2x2 yang diperoleh setelah elemen-elemen pada baris ke-$i$ dan kolom ke-$j$ dihilangkan.$\bullet$ Misal akan dicari $M_{11}$, maka kita hilangkan elemen-elemen baris ke-$1$ dan kolom ke-$1$ seperti berikutSehingga diperoleh $M_{11}=\begin{vmatrix} a_{22} & a_{23}\\ a_{32} & a_{33} \end{vmatrix}$Untuk selanjutnya, kita dapat mencari minor yang lain dengan cara yang serupa seperti diatas.$\bullet ~M_{12}$ hilangkan elemen-elemen baris ke-$1$ dan kolom ke-$2$Sehingga diperoleh $M_{12}=\begin{vmatrix} a_{21} & a_{23}\\ a_{31} & a_{33} \end{vmatrix}$$\bullet ~M_{13}$ hilangkan elemen-elemen baris ke-$1$ dan kolom ke-$3$Sehingga diperoleh $M_{13}=\begin{vmatrix} a_{21} & a_{22}\\ a_{31} & a_{32} \end{vmatrix}$$\bullet~M_{21}$ hilangkan elemen-elemen baris ke-$2$ dan kolom ke-$1$Sehingga diperoleh $M_{21}=\begin{vmatrix} a_{12} & a_{13}\\ a_{32} & a_{32} \end{vmatrix}$$\bullet~M_{22}$ hilangkan elemen-elemen baris ke-$2$ dan kolom ke-$2$Sehingga diperoleh $M_{22}=\begin{vmatrix} a_{11} & a_{13}\\ a_{31} & a_{33} \end{vmatrix}$$\bullet~M_{23}$ hilangkan elemen-elemen baris ke-$2$ dan kolom ke-$3$Sehingga diperoleh $M_{23}=\begin{vmatrix} a_{11} & a_{12}\\ a_{31} & a_{32} \end{vmatrix}$$\bullet~M_{31}$ hilangkan elemen-elemen baris ke-$3$ dan kolom ke-$1$Sehingga diperoleh $M_{31}=\begin{vmatrix} a_{12} & a_{13}\\ a_{22} & a_{23} \end{vmatrix}$$\bullet~M_{32}$ hilangkan elemen-elemen baris ke-$3$ dan kolom ke-$2$Sehingga diperoleh $M_{32}=\begin{vmatrix} a_{11} & a_{13}\\ a_{21} & a_{23} \end{vmatrix}$$\bullet~M_{33}$ hilangkan elemen-elemen baris ke-$3$ dan kolom ke-$3$Sehingga diperoleh $M_{33}=\begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{vmatrix}$KofaktorKofaktor elemen $a_{ij}$ dinotasikan dengan $K_{ij}$ adalah hasil kali $-1^{i+j}$ dengan minor elemen tersebut. Sehingga didapat rumus untuk mencari kofaktor sebagai berikut.$K_{ij}=-1^{i+j} ~ M_{ij} $Ket $K_{ij}$ merupakan kofaktor elemen $a_{ij}$ $M_{ij}$ merupakan minor elemen $a_{ij}$Dari matriks $A = \begin{pmatrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\end{pmatrix}$, dapat diperoleh kofaktor-kofaktor sebagai berikut.$K_{11}=-1^{1+1} ~ M_{11}= M_{11} $$K_{12}=-1^{1+2} ~ M_{12}= -M_{12} $$K_{13}=-1^{1+3} ~ M_{13}= M_{13}$$K_{21}=-1^{2+1} ~ M_{21}= -M_{21}$$K_{22}=-1^{2+2} ~ M_{22}= M_{22}$$K_{23}=-1^{2+3} ~ M_{23}= -M_{23}$$K_{31}=-1^{3+1} ~ M_{31}= M_{31}$$K_{32}=-1^{3+1} ~ M_{32}= -M_{32}$$K_{33}=-1^{3+3} ~ M_{33}= M_{33}$Sehingga didapat kofaktor matriks $A$ sebagai berikut.$\begin{aligned} kof~A &= \begin{pmatrix}K_{11} & K_{12} & K_{13}\\K_{21} & K_{22} & K_{23}\\ K_{31} & K_{32} & K_{33}\end{pmatrix}\\ \\ &= \begin{pmatrix}M_{11} & -M_{12} & M_{13}\\-M_{21} & M_{22} & -M_{23}\\ M_{31} & -M_{32} & M_{33}\end{pmatrix} \end{aligned}$Untuk lebih jelasnya, berikut ini contoh soal menentukan minor dan kofaktor matriks ordo 3x3Contoh soal Diketahui $B = \begin{pmatrix}~1 & 2 & 3~\\ ~2 & 5 & 3~\\~1 & 0 & 8~\end{pmatrix}$, maka $kof~B $ adalah ...Jawab$K_{11}=-1^{1+1} ~ \begin{vmatrix} 5 & 3\\ 0 & 8 \end{vmatrix}= 40-0=40 $$K_{12}=-1^{1+2} ~ \begin{vmatrix} 2 & 3\\ 1 & 8 \end{vmatrix}= -16-3=-13 $$K_{13}=-1^{1+3} ~ \begin{vmatrix} 2 & 5\\ 1 & 0 \end{vmatrix}= 0-5=-5$$K_{21}=-1^{2+1} ~ \begin{vmatrix} 2 & 3\\ 0 & 8 \end{vmatrix}= -16-0=-16$$K_{22}=-1^{2+2} ~ \begin{vmatrix} 1 & 3\\ 1 & 8 \end{vmatrix}= 8-3=5$$K_{23}=-1^{2+3} ~ \begin{vmatrix} 1 & 2\\ 1 & 0 \end{vmatrix}= -0-2=2$$K_{31}=-1^{3+1} ~ \begin{vmatrix} 2 & 3\\ 5 & 3 \end{vmatrix}= 6-15=-9$$K_{32}=-1^{3+1} ~ \begin{vmatrix} 1 & 3\\ 2 & 3 \end{vmatrix}= -3-6=3$$K_{33}=-1^{3+3} ~ \begin{vmatrix} 1 & 2\\ 2 & 5 \end{vmatrix}= 5-4=1$Jadi, $kof~B = \begin{pmatrix}40 & -13 & -5\\-16 & 5 & 2\\ -9 & 3 & 1\end{pmatrix}$Demikianlah ulasan terkait cara menentukan minor dan kofaktor matriks ordo 3x3. Semoga bermanfaat. ReferensiE. S., Pesta dan Cecep Anwar H. F. S. 2008. Matematika aplikasi untuk SMA dan MA kelas XII program studi ilmu alam. Jakarta Pusat Perbukuan Departemen Pendidikan Nasional. Y., Rosihan Ari dan Indriyastuti. 2009. Khasanah Matematika 3 untuk kelas XII SMA/MA Program Bahasa. Jakarta Pusat Perbukuan Departemen Pendidikan Nasional.
Danini memiliki kelebihan dibandingkan dengan mencari determinan matriks dengan metode metode sarrus, kita hanya bisa mencari determinan suatu matriks sampai pada ordo 3 x 3, tetapi kalau menggunakan metode kofaktor, kita bisa mencari determinan suatu matriks sampai ordo n x n. hehehe..hebat kan?.
- Determinan seperti yang kita ketahui merupakan suatu nilai yang dapat dihitung dari unsur matriks persegi. Bagaimanakah cara menghitung determinan pada matriks? Dilansir dari Pure Mathematics Determinants and Matrices 2008 oleh Anthony Nicolaides, suatu matriks A memiliki determinan yang dinotasikan sebagai berikut Secara umum sifat dari determinan matriks adalah FAUZIYYAH Sifat pada determinan matriks Determinan Matriks 2x2 Misalkan terdapat suatu matriks 2x2 dengan elemennya adalah a, b, c, dan d sebagai berikut FAUZIYYAH Matriks dengan ordo 2x2 Baca juga Konsep Matriks Notasi, Elemen, Baris, Kolom dan Ordo Dikutip dari Matrices in Engineering Problems 2011 oleh Marvin J Tobias, determinan dari suatu matriks 2x2 diperoleh dari hubungan perkalian silang pada matriks tersebut. Secara matematis dapat ditulis sebagai berikut
Untukλ = 2 maka. Misalkan diberikan a metriks 3x3 dan vektor x. Untuk menentukan nilai yang skalar, berlaku: nilai eigen dan vektor eigen. Bagaimana cara mencari nilai eigen dan vektor eigen pada matriks berodo 3x3 g. Suatu spl akan memiliki penyelesaian apabila nilai determinannya tidak. Proses pengerjaan nilai dan vektor eigen
Hai Quipperian, apakah kamu masih ingat materi tentang matriks? Membahas masalah matriks, jangan ciut nyali dulu ya. Sebenarnya, matriks itu mudah asal kamu giat untuk memahaminya. Saat membahas matriks, ada dua besaran yang tak boleh terlewatkan, yaitu determinan dan invers. Apa sih determinan dan invers matriks itu? Bagaimana pula cara mencarinya? Daripada penasaran, yuk simak artikel selengkapnya! Pengertian Determinan dan Invers Matriks Determinan adalah suatu nilai yang bisa ditentukan dari unsur-unsur matriks persegi. Jika bentuknya tidak persegi, tentu tidak bisa ditentukan determinannya. Matriks persegi adalah matriks yang jumlah baris dan kolomnya sama, contoh matriks 2 x 2 dan matriks 3 x 3. Lalu, apa yang dimaksud invers matriks? Invers matriks adalah kebalikan dari matriks awal dan dinyatakan sebagai matriks baru. Lalu, bagaimana cara menentukan determinan serta invers? Cara Menentukan Determinan Matriks Berikut ini akan dijabarkan cara menentukan determinan untuk beberapa matriks persegi. 1. Cara menentukan determinan matriks 2 x 2 Matriks 2 x 2 adalah matriks yang memiliki jumlah baris 2 dan jumlah kolom 2 seperti berikut. Cara menentukan determinannya cukup mudah, yaitu sebagai berikut. Lakukan perkalian elemen pada diagonal utama, yaitu ad. Lakukan perkalian elemen pada diagonal sekunder, yaitu bc. Kurangkan hasil perkalian diagonal utama dan diagonal sekunder, ad – bc. Dengan demikian, detP = ad – bc. Untuk lebih jelasnya, perhatikan contoh berikut. Tentukan determinan matriks ! Pembahasan Determinan matriks P bisa ditentukan seperti berikut. 2. Cara menentukan determinan matriks 3 x 3 Matriks 3 x 3 adalah matriks yang memiliki jumlah baris dan kolom sebanyak 3. Oleh karena jumlah baris dan kolomnya lebih banyak daripada matriks 2 x 2, maka cara menentukan determinannya juga lebih rumit. Ada beberapa cara yang bisa Quipperian gunakan untuk menentukan determinan matriks ini, yaitu sebagai berikut. Metode Sarrus Metode Sarrus termasuk salah satu metode paling mudah untuk menentukan determinan matriks. Langkah-langkahnya adalah sebagai berikut. Elemen matriks pada kolom ke-1 dan ke-2 ditulis kembali di belakang kolom ke-3. Lakukan perkalian menyilang yang melalui tiga elemen ke kanan bawah dimulai dari kolom paling depan kolom ke-1. Lalu, jumlahkan hasilnya sebagai x1. Lakukan perkalian menyilang melalui tiga elemen ke kiri bawah dari kolom paling belakang kolom ke-5. Lalu, jumlahkan hasilnya sebagai x2. Tentukan hasil determinannya dengan mengurangkan x1 dengan x2. Untuk lebih jelasnya, perhatikan contoh berikut. Tentukan determinannya dengan Metode Sarrus! Pembahasan Mula-mula, kamu harus menulis kembali kolom ke-1 dan ke-2 di belakang kolom ketiga. Lalu, lakukan perkalian menyilang dari kolom ke-1 ke arah kanan bawah. Lakukan langkah yang sama, namun dengan arah yang berlawanan. Terakhir, kurangkan hasil x1 dan x2. Jadi, determinan P adalah -12. Metode reduksi baris Metode reduksi adalah metode yang dilakukan dengan membuat elemen matriksnya berbentuk segitiga, umumnya segitiga atas seperti berikut. Segitiga atas yang dimaksud adalah nilai 0 di elemen a21, a31, dan a32. Jika kamu mendapatkan perintah untuk menggunakan metode reduksi baris, pastikan bahwa elemen-elemen tersebut bernilai 0. Lantas, bagaimana jika nilai awalnya tidak 0? Maka kamu harus mengoperasikan elemen antarbarisnya sedemikian sehingga nilai pada elemen a21, a31, dan a32 bernilai 0. Operasi antarbaris juga meliputi pertukaran antarbaris, misal baris ke-1 ditukar dengan baris ke-3. Jika terjadi pertukaran baris, kamu harus mengalikan matriks itu dengan -1. Perhatikan contoh berikut. Tentukan determinannya dengan metode reduksi baris! Pembahasan Di matriks tersebut sudah ada baris yang bernilai 0, yaitu pada a12. Kamu bisa menukarkan baris ke-1 dan baris ke-3 untuk memudahkan operasi bilangan di setiap elemen. Langkah selanjutnya adalah mengoperasikan sedemikian sehingga elemen a21 = 0, yaitu dengan melakukan penjumlahan antara B2 baris 2 dengan 4 kali B1 baris 1. Metode minor kofaktor Metode minor kofaktor adalah metode penentuan determinan matriks menggunakan minor kofaktor matriks. Mungkin, kamu lebih mengenalnya dengan metode tutup baris kolom. Secara matematis, rumus determinan matriks dengan minor kofaktor adalah sebagai berikut. Dengan C = kofaktor ke-ij dan M = minor ke-ij. Perhatikan contoh berikut. Tentukan determinannya dengan metode minor kofaktor. Mula-mula, kamu harus mencari C11, C12, dan, C13 seperti berikut. Nilai C11 Diperoleh Nilai C12 Diperoleh Nilai C13 Diperoleh Dengan demikian, determinan P dirumuskan sebagai berikut. Ternyata, hasil determinan P yang diperoleh dari metode Sarrus, metode reduksi baris, dan metode minor kofaktor sama lho. Untuk mengerjakan soal-soal serupa, pilihlah metode yang kamu anggap lebih mudah, ya. Cara di atas juga bisa diterapkan pada matriks ordo 4 x 4. Namun, pembahasan lengkap tentang determinan matriks 4 x 4 akan kamu jumpai di bangku perguruan tinggi. ☺ Cara Menentukan Invers Matriks Sama seperti determinan, untuk menentukan invers matriks, kamu bisa menggunakan beberapa metode. Salah satu metodenya melibatkan nilai determinan. Lantas, bagaimana cara menentukan invers matriks? Cara menentukan invers matriks 2 x 2 Untuk menentukan invers matriks 2 x 2 hanya ada satu cara, yaitu dengan persamaan berikut. Adjoin P diperoleh dengan menukar elemen matriks a11 dan a22, lalu mengalikan elemen matriks a12 dan a21 dengan -1. Perhatikan contoh berikut. Tentukan invers matriks P berikut. Pembahasan Mula-mula, kamu harus menentukan determinan matriksnya. Selanjutnya, tentukan adjoin P. Dengan demikian, invers matriks P bisa dinyatakan sebagai berikut. Cara menentukan invers matriks 3 x 3 Invers matriks 3 x 3 bisa ditentukan dengan dua cara, yaitu adjoin dan OBE operasi baris elementer. Apa perbedaan antara kedua cara itu? Metode adjoin Cara menentukan matriks 3 x 3 dengan adjoin dilakukan dengan mencari semua kofaktor di setiap elemen matriksnya. Cara mencari kofaktor sama dengan cara sebelumnya, yaitu dengan menutup baris dan kolom. Perhatikan contoh berikut. Tentukan invers matriks P tersebut dengan metode adjoin! Pembahasan Mula-mula, kamu harus mencari C11, C12, C13, sampai C33 seperti berikut. Nilai C11 Diperoleh Nilai C12 Diperoleh Nilai C13 Diperoleh Nilai C21 Diperoleh Nilai C22 Diperoleh Nilai C23 Diperoleh Nilai C31 Diperoleh Nilai C32 Diperoleh Nilai C33 Diperoleh Dengan demikian, kofaktor matriks P adalah sebagai berikut. Lalu, tentukan adjoin matriks P dengan mengubah elemen baris menjadi kolom seperti berikut. Jadi, invers matriks P adalah sebagai berikut. Sampai sini, apakah Quipperian sudah paham? Metode OBE operasi baris elementer Cara ini hampir sama dengan metode reduksi baris pada determinan. Bedanya, kamu harus mengarahkan matriksnya menjadi matriks identitas. Persamaan umum untuk menyelesaikan metode obe ini adalah sebagai berikut. Perhatikan contoh berikut. Tentukan invers matriks tersebut dengan metode obe! Pembahasan Mula-mula, kamu harus menentukan persamaan umumnya seperti berikut. Dari langkah yang sedemikian panjang, diperoleh invers matriks P yaitu sebagai berikut. Ternyata, hasil inversnya sama dengan invers matriks cara adjoin. Namun, cara OBE ini lebih panjang dan rumit. Dalam penerapannya, Quipperian bisa memilih cara yang dianggap lebih mudah, ya. Sampai sini, apakah Quipperian sudah paham bagaimana cara menentukan determinan dan invers matriks? Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk materi lengkapnya, bisa Quipperian lihat di Quipper Video. Yuk, buruan gabung biar ujian jadi lebih siap! Salam Quipper!
Щеղе የ
Юտешօፆ еписራ рግдеշኑኺ ուξι
Щዒхобрፌдон ուскуኅане ዳтሌኬոтвሕժа
ሷճቂшոቿω θνаς
К екрፗλи у
Շач клեጉο рግζелиቡի
Ρեн итевኀշуዶиρ ևዓиሠըрс
Θглሔзв мևδεч
Емисваш обремե стωдрэшጌкл
Nah untuk menentukan determinan matriks 3×3, kita bisa menggunakan dua cara, yaitu metode Sarrus dan Minor-Kofaktor. Lalu, gimana cara menentukan Adjoin matriks 3×3? Elo harus ingat cara menentukan kofaktor matriks a ij, yaitu C ij = (-1) i+j M ij, di mana M ij adalah minor dari matriks A ij, sedangkan C ij adalah kofaktor A atau Kof(A).
7 tahun lalu Real Time1menit Metode Sarrus hanya dapat digunakan untuk matriks 3×3. Perhitungan determinan suatu matriks dengan ukuran lebih besar sangat rumit jika menggunakan metode Sarrus. Salah satu cara menentukan determinan matriks segi adalah dengaz minor-kofaktor elemen matriks tersebut. Cara ini dijelaskan sebagai berikut Misalkan Aᵢⱼ adalah suatu matriks yang diperoleh dengan cara menghilangkan baris ke-i dan kolom ke-j dari suatu matriks Aₘₓₙ. Didefinisikan sebagai berikut Minor elemen aᵢⱼ diberi notasi Mᵢⱼ, adalah Mᵢⱼ=detAᵢⱼ. Kofaktor elemen aᵢⱼ, diberi notasi αᵢⱼ, adalah αᵢⱼ=-1ⁱ⁺ʲ. Contoh Misalkan suatu matriks A berukuran 3×3 seperti berikut ini \[\begin{pmatrix} 1 &2 &3 \\ 4 &5 &6 \\ 7 &8 &9 \end{pmatrix}\] maka diperoleh Perhitungan Determinan dengan Minor-Kofaktor Definisi Misalkan suatu matriks A = aᵢⱼₙₓₙ dan aᵢⱼ kofaktor elemen aᵢⱼ, maka Contoh 1 Hitunglah determinan matriks berikut” \[\begin{pmatrix} 3 &-2 &1 \\ 1 &3 &2 \\ 0 &-3 &1 \end{pmatrix}\] Jawab Untuk menghitung determinan dari matriks tersebut kita gunakan definisi di atas, dengan memilih baris ke-2, sehingga detA=a₂₁ α₂₁+a₂₂ α₂₂+a₂₃ α₂₃Dalam hal ini, a₂₁=1,a₂₂=3, a₂₃=2, dan Jadi, detA=1-1 + 33 + 29 = 26 Selanjutnya dengan menggunakan definisi diatas lagi, kita juga bisa dengan memilih baris/kolom lainnya, misal dipilih kolom ke-3, maka \det\mathbf{A}=a_{13}\alpha _{13}+a_{23}\alpha _{23}+a_{33}\alpha _{33}\dalam hal ini,\a_{13}=1,a_{23}=2,a_{33}=1\, dan Jadi, detA = 1-3 + 29 + 111 = 26 Apabila kita perhatikan pada hasil akhir pada penyelesaiannya, kita akan dapatkan hasil yang sama. Maka kita cukup memilih satu baris atau kolom saja untuk mengerjakan soal seperti diatas. Contoh 2 Tentukan determinan matriks A₃ₓ₃ berikut ini \[\begin{pmatrix} a_{11} &a_{12} &a_{13} \\ a_{21} &a_{22} &a_{23} \\ a_{31} &a_{32} &a_{33} \end{pmatrix}\] JawabDengan menggunakan definisi di atas, dengan memilih baris ke-1 Jadi didapatkan seperti dibawah ini Jika diperhatikan, sebenarnya rumus pada metode Sarrus diperoleh dari metode minor-kofaktor. Perhatikan bahwa tanda untuk kofaktor bergantung pada penjumlahan i dan j. Untuk memudahkan perhitungan determinan dengan menggunakan minor-kofaktor, perhatikan tabel berikut Jika dipilih baris ke-1, maka detA=a₁₁M₁₁-a₁₂M₁₂+…Jika dipilih baris ke-2, maka detA=a₂₁M₂₁-a₂₂M₂₂+… dan seterusnya. sheetmath
DeterminanMatriks berordo 3x3 dengan metode ekspansi kofaktor dan contoh soalnya.Semoga video ini bermanfaat. Jangan lupa dukung channel ini dengan cara likUnduh PDF Unduh PDF Determinan matriks sering digunakan dalam kalkulus, aljabar linear, dan geometri pada tingkat yang lebih tinggi. Di luar dunia akademik, para insinyur dan pemrogram grafika komputer menggunakan matriks dan determinannya sepanjang waktu. [1] Jika Anda sudah tahu cara menentukan determinan matriks ordo 2x2, Anda hanya perlu belajar kapan menggunakan tambah, kurang, dan kali dalam menentukan determinan matriks ordo 3x3. Tulis matriks ordo 3 x 3 Anda. Kita akan mulai dengan matriks A ordo 3x3 dan cobalah untuk mencari determinan A. Di bawah ini adalah bentuk notasi umum matriks yang akan kita gunakan dan contoh matriks kita a11 a12 a13 1 5 3 M = a21 a22 a23 = 2 4 7 a31 a32 a33 4 6 2 1 Pilih satu baris atau kolom. Jadikan pilihan Anda sebagai baris atau kolom referensi. Apa pun yang Anda pilih, Anda akan tetap mendapat jawaban yang sama. Untuk sementara, pilih baris pertama. Kami akan memberi Anda beberapa saran untuk memilih opsi yang paling mudah dihitung di bagian berikutnya. Pilih baris pertama dari contoh matriks A. Lingkari angka 1 5 3. Di notasi umum, lingkari a11 a12 a13. 2 Coret baris dan kolom elemen pertama Anda. Lihat pada baris atau kolom yang Anda lingkari dan pilih elemen pertama. Coret baris dan kolomnya. Hanya akan tersisa 4 angka yang tidak tersentuh. Jadikan 4 angka ini sebagai matriks ordo 2 x 2. Pada contoh, baris referensi kita adalah 1 5 3. Elemen pertama berada pada baris ke-1 dan kolom ke-1. Coret seluruh baris ke-1 dan kolom ke-1. Tulis elemen yang tersisa menjadi matriks 2 x 2 1 5 3 2 4 7 4 6 2 3Tentukan determinan matriks ordo 2 x 2. Ingat, tentukan determinan matriks [ac bd] dengan cara ad - bc.[2] Anda juga mungkin pernah belajar menentukan determinan matriks dengan menggambar sebuah X di antara matriks 2 x 2. Kalikan dua angka yang terhubung dengan garis \ dari X. Lalu, kurangi dengan jumlah kali dua angka yang terhubung dengan garis /. Gunakan formula ini untuk menghitung determinan matriks 2 x 2. Pada contoh, determinan matriks [46 72] = 4*2 - 7*6 = -34. Determinan ini disebut minor dari elemen yang Anda pilih pada matriks awal.[3] Pada kasus ini, kita baru saja menemukan minor dari a11. 4 Kalikan angka yang telah ditemukan dengan elemen yang Anda pilih. Ingat, Anda telah memilih elemen dari baris atau kolom referensi ketika Anda memutuskan baris dan kolom yang akan dicoret. Kalikan elemen ini dengan determinan matriks 2 x 2 yang telah Anda temukan. Pada contoh, kita memilih a11 yang bernilai 1. Kalikan angka ini dengan -34 determinan dari matriks 2 x 2 untuk mendapatkan 1*-34 = -34. 5 Tentukan simbol dari jawaban Anda. Langkah selanjutnya adalah Anda harus mengalikan jawaban Anda dengan 1 atau-1 untuk mendapatkan kofaktor dari elemen yang Anda pilih. Simbol yang Anda gunakan tergantung dengan letak elemen pada matriks 3 x 3. Ingat, tabel simbol ini digunakan untuk menentukan pengali elemen Anda + - + - + - + - + Karena kita memilih a11 yang bertanda a +, kita akan mengalikan angka dengan +1 atau dengan kata lain, jangan diubah. Jawaban yang muncul akan sama, yaitu -34. Cara lain untuk menentukan simbol adalah dengan menggunakan formula -1i+j yang mana i dan j adalah baris dan kolom elemen. [4] 6 Ulangi proses ini untuk elemen kedua pada baris atau kolom referensi Anda. Kembalilah ke matriks awal 3 x 3 yang Anda lingkari baris atau kolomnya sebelumnya. Ulangi proses yang sama dengan elemen tersebut Coret baris dan kolom elemen tersebut. Pada kasus ini, pilih elemen a12 yang bernilai 5. Coret baris ke-1 1 5 3 dan kolom ke-2 5 4 6. Jadikan elemen yang tersisa menjadi matriks 2x2. Pada contoh kita, matriks ordo 2x2 untuk elemen kedua adalah [24 72]. Tentukan determinan matriks 2x2 ini. Gunakan formula ad - bc. 2*2 - 7*4 = -24 Kalikan dengan elemen pada matriks 3x3 yang Anda pilih. -24 * 5 = -120 Putuskan untuk mengalikan hasil di atas dengan -1 atau tidak. Gunakan tabel simbol atau formula -1ij. Pilih elemen a12 yang bersimbol – pada tabel simbol. Ganti simbol jawaban kita dengan -1*-120 = 120. 7 Ulangi proses yang sama untuk elemen ketiga. Anda memiliki satu kofaktor lagi untuk menentukan determinan. Hitung i untuk elemen ketiga di baris atau kolom referensi Anda. Berikut merupakan cara cepat menghitung kofaktor a13 pada contoh kita Coret baris ke-1 dan kolom ke-3 untuk mendapatkan [24 46]. Determinannya adalah 2*6 - 4*4 = -4. Kalikan dengan elemen a13 -4 * 3 = -12. Elemen a13 bersimbol + pada tabel simbol, sehingga jawabannya adalah -12. 8 Jumlahkan hasil ketiga hitungan Anda. Ini adalah langkah terakhir. Anda telah menghitung tiga kofaktor, satu untuk setiap elemen pada satu baris atau kolom. Jumlahkan hasil tersebut dan Anda akan menemukan determinan matriks 3 x 3. Pada contoh, determinan matriks adalah -34 + 120 + -12 = 74. Iklan 1 Pilih baris atau kolom referensi yang memiliki angka 0 paling banyak. Ingat, Anda dapat memilih baris atau kolom apa pun yang Anda mau. Apa pun yang Anda pilih, jawaban yang didapat akan sama. Jika Anda memilih baris atau kolom dengan angka 0, Anda hanya perlu menghitung kofaktor dengan elemen yang bukan angka 0 karena Sebagai contoh, pilih baris ke-2 yang memiliki elemen a21, a22, dan a23. Untuk memecahkan soal ini, kita akan menggunakan 3 matriks 2 x 2 yang berbeda, sebut saja A21, A22, and A23. Determinan matriks 3x3 adalah a21A21 - a22A22 + a23A23. Jika a22 dan a23 bernilai 0,formula yang ada akan menjadi a21A21 - 0*A22 + 0*A23 = a21A21 - 0 + 0 = a21A21. Oleh karena itu, kita hanya akan menghitung kofaktor dari satu elemen saja. 2 Gunakan baris tambahan untuk membuat soal matriks menjadi lebih mudah. Jika Anda mengambil nilai dari satu baris dan menambahkannya ke baris yang lain, determinan dari matriks tersebut tidak akan berubah. Hal ini juga berlaku sama untuk kolom. Anda dapat melakukan ini berulang kali atau mengalikannya dengan konstanta sebelum menambahkannya untuk mendapatkan angka 0 di matriks sebanyak mungkin. Hal ini dapat menghemat banyak waktu. Sebagai contoh, Anda memiliki matriks dengan 3 baris [9 -1 2] [3 1 0] [7 5 -2] Untuk menghilangkan angka 9 yang berada di posisi a11, Anda dapat mengalikan nilai di baris ke-2 dengan -3 dan menambahkan hasilnya ke baris pertama. Sekarang, baris pertama yang baru adalah [9 -1 2] + [-9 -3 0] = [0 -4 2]. Matriks yang baru memiliki baris [0 -4 2] [3 1 0] [7 5 -2]. Gunakan trik yang sama pada kolom untuk membuat a12 menjadi angka 0. 3 Gunakan cara cepat untuk matriks segitiga. Pada kasus khusus ini, determinan merupakan hasil dari elemen pada diagonal utama, dari a11 di kiri atas hingga a33 di kanan bawah matriks. Matriks ini masih merupakan matriks 3x3, tetapi matriks "segitiga" memiliki pola khusus dari angka yang bukan angka 0[5] Matriks segitiga atas Seluruh elemen yang tidak bernilai 0 berada pada atau di atas diagonal utama. Seluruh angka di bawah diagonal utama adalah angka 0. Matriks segitiga bawah Seluruh elemen yang tidak bernilai 0 berada pada atau di bawah diagonal utama. Matriks diagonal Seluruh elemen yang tidak bernilai 0 berada pada diagonal utama himpunan bagian dari jenis matriks di atas. Iklan Jika seluruh elemen pada satu baris atau kolom adalah 0, determinan matriks tersebut adalah 0. Metode ini dapat digunakan untuk seluruh ukuran matriks kuadrat. Sebagai contoh, jika Anda menggunakan metode ini untuk matriks ordo 4x4, "coretan" Anda akan menyisakan matriks ordo 3x3 yang determinannya dapat ditentukan dengan mengikuti langkah di atas. Ingat, mengerjakan hal ini dapat membuat Anda bosan! Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
K33 = ( − 1) 3 + 3 M 33 = M 33. Sehingga didapat kofaktor matriks A sebagai berikut. k o f ( A) = ( K 11 K 12 K 13 K 21 K 22 K 23 K 31 K 32 K 33) = ( M 11 − M 12 M 13 − M 21 M 22 − M 23 M 31 − M 32 M 33) Untuk lebih jelasnya, berikut ini contoh soal menentukan minor dan kofaktor matriks ordo 3x3.
Videoini membahas cara mudah menentukan kofaktor dan adjoint matriks ordo 3x3.#adjoint #kofaktor #matriks #matematika
Sebelumsaya membahas perihal rumus invers matriks ordo 2x2 dan ordo 3x3 beserta tumpuan soal invers matriksnya. Invers matriks 2x2 dan 3x3 beserta contoh soalnya invers matriks ordo 3×3. Contoh soal invers ordo 22 brainly co id. Cara mencari invers matriks ordo 2x2, cara mencari invers matriks ordo 3x3, contoh soal invers matriks dan
Determinanmatriks persegi dengan ordo 3x3 dapat dihitung dengan menggunakan dua cara, yaitu kaidah Sarrus dan ekspansi kofaktor. Namun, cara yang paling sering digunakan dalam menentukan determinan matriks ordo 3x3 adalah dengan kaidah Sarrus. Langkah-langkah mencari determinan matriks ordo 3x3 dengan kaidah Sarrus: 1. Meletakkan kolom pertama
MatriksKofaktor dan Adjoin Matriks - Setelah mempelajari materi matematika kali ini, anda dapat memahami tentang cara menentukan minor dan kofaktor suatu matriks. Andapun dapat mencari adjoin suatu matriks, sehingga nantinya adjoin matriks dapat digunakan dalam membantu mencari invers matriks. Mencari Nilai Minor 1. Memahami Nilai Minor
CaraMenyelesaikan Matriks Invers (3x3) Matriks Kofaktor adalah matriks yang unsurnya diganti dengan nilai determinan yang unsurnya tidak sebaris dan tidak sekolom dengan unsur asal. Untuk tandanya digunakan tanda positif negatif saling bergantian. Langkah pertama maka kita harus mencari kofaktor dari A , dengan cara sbb: Langkah kedua